PostHeaderIcon Tyson’s Speech

This is not mine. It is Neil deGrasse Tyson’s but I can’t find a permanent link to it on the web, and it’s great.

The Search for Life in the Universe
An overview of the scientific and cultural implications of finding life in the cosmos

Neil deGrasse Tyson
Department of Astrophysics & Hayden Planetarium
American Museum of Natural History

11 July 2001

For the House Committee on Science, Subcommittee on Space and Aeronautics.
To be summarized at 10:00AM, 12 July 2001

Rayburn House Office Building, Suite2318, Washington DC

The discovery of what is now more than seventy planets around stars other than the Sun continues to stimulate tremendous public and media interest. In this case, attention was driven not so much by the discovery of the extra-solar planets themselves, but by the prospect of them hosting intelligent life.

Nearly every space move to come from Hollywood includes some encounter between humans and alien life forms. Most recently we have the high-budget Mars-based films Mission to Mars, and The Red Planet. The astrophysics appears to be the ladder to what people really care about: whether or not we are alone in the universe. I have empirical evidence to support this contention. If the person on next to me on a long airplane flight ever finds out that I am an astrophysicist, nine times out of ten they ask, with wide eyes, about life in the universe. And only later do they ask me about the big bang and black holes. I know of no other discipline that triggers such a consistent and reliable reaction in public sentiment. This phenomenon is not limited to Americans. The time-honored question: “What is our place in the universe” might just be genetically encoded in our species. All known cultures across all of time have attempted to answer that question. Today we ask the same question, but with fewer words: “Are we alone?”

Ordinarily, there is no riskier step that a scientist (or anyone) can take than to make sweeping generalizations from just one example. At the moment, life on Earth is the only known life in the universe, but there are compelling arguments to suggest we are not alone. Indeed, most astrophysicists accept a high probability of there being life elsewhere in the universe, if not on other planets or on moons within our own solar system. The numbers are, well, astronomical: If the count of planets in our solar system is not unusual, then there are more planets in the universe than the sum of all sounds and words ever uttered by every human who has ever lived. To declare that Earth must be the only planet in the universe with life would be inexcusably egocentric of us.

Many generations of thinkers, both religious and scientific, have been led astray by anthropocentric assumptions, while others were simply led astray by ignorance. In the absence of dogma and data, history tells us that it’s prudent to be guided by the notion that we are not special, which is generally known as the Copernican principle, named for the Polish astronomer Nicholas Copernicus who, in the mid 1500s, put the Sun back in the middle of our solar system where it belongs. In spite of a third century B.C. account of a sun-centered universe proposed by the Greek philosopher Aristarchus, the Earth-centered universe was by far the most popular view for most of the last 2000 years. Codified by the teachings of Aristotle and Ptolemy, and by the preachings of the Roman Catholic Church, people generally accepted Earth as the center of all motion. It was self-evident: the universe not only looked that way, but God surely made it so. The sixteenth century Italian monk Giordano Bruno suggested publicly that the universe was filled with planets that harbor life. For these thoughts he was burned at the stake. Fortunately, today we live in somewhat more tolerant times.

While there is no guarantee that the Copernican principle will guide us correctly for all scientific discoveries to come, it has humbled our egos with the realization that not only is Earth not in the center of the solar system, but the solar system is not in the center of the Milky Way galaxy, and the Milky Way galaxy is not in the center of the universe. And in case you are one of those people who thinks that the edge may be a special place, then we are not at the edge of anything either.

A wise contemporary posture would be to assume that life on Earth is not immune to the Copernican principle. If so, then how can the appearance or the chemistry of life on Earth provide clues to what life might be like elsewhere in the universe?

I do not know whether biologists walk around every day awestruck by the diversity of life. I certainly do. On this single planet called Earth, there co-exist (among countless other life forms), algae, beetles, sponges, jellyfish, snakes, condors, and giant sequoias. Imagine these seven living organisms lined up next to each other in size-place. If you didn’t know better, you would be hard-pressed to believe that they all came from the same universe, much less the same planet. Try describing a snake to somebody who has never seen one: “You gotta believe me. There is this animal on Earth that 1) can stalk its prey with infrared detectors, 2) swallows whole live animals up to five times bigger than its head, 3) has no arms or legs or any other appendage, yet 4) can slide along level ground at a speed of two feet per second!” Given the diversity of life on Earth, one might expect a diversity of life exhibited among Hollywood aliens. But I am consistently amazed by the film industry’s lack of creativity. With a few notable exceptions such as life forms in The Blob (1958) and in 2001: A Space Odyssey (1968), Hollywood aliens look remarkably humanoid. No matter how ugly (or cute) they are, nearly all of them have two eyes, a nose, a mouth, two ears, a head, a neck, shoulders, arms, hands, fingers, a torso, two legs, two feet — and they can walk. From an anatomical view, these creatures are practically indistinguishable from humans, yet they are supposed to have come from another planet. If anything is certain, it is that life elsewhere in the universe, intelligent or otherwise, will look at least as exotic as some of Earth’s own life forms.

The chemical composition of Earth-based life is primarily derived from a select few ingredients. The elements hydrogen, oxygen, and carbon account for over 95% of the atoms in the human body and in all known life. Of the three, the chemical structure of the carbon atom allows it to bond readily and strongly with itself and with many other elements in many different ways, which is how we came to become carbon-based life, and which is why the study molecules that contain carbon is generally known as “organic” chemistry. The study of life elsewhere in the universe is known as exobiology, which is one of the few disciplines that attempts to function with the complete absence of first-hand data.

Is life chemically special? The Copernican principle suggests that it probably isn’t. Aliens need not look like us to resemble us in more fundamental ways. Consider that the four most common elements in the universe are hydrogen, helium, carbon, and oxygen. Helium is inert. So the three most abundant, chemically active ingredients in the cosmos are also the top three ingredients in life on Earth. For this reason, you can bet that if life is found on another planet, it will be made of a similar mix of elements. Conversely, if life on Earth were composed primarily of, for example, molybdenum, bismuth, and plutonium, then we would have excellent reason to suspect that we were something special in the universe.

Appealing once again to the Copernican principle, we can assume that the size of an alien organism is not likely to be ridiculously large compared with life as we know it. There are cogent structural reasons why you would not expect to find a life the size of the Empire State Building strutting around a planet. But if we ignore these engineering limitations of biological matter we approach another, more fundamental limit. If we assume that an alien has control of its own appendages, or more generally, if we assume the organism functions coherently as a system, then its size would ultimately be constrained by its ability to send signals within itself at the speed of light — the fastest allowable speed in the universe. For an admittedly extreme example, if an organism were as big as the entire solar system (about 10 light-hours across), and if it wanted to scratch its head, then this simple act would take no less than 10 hours to accomplish. Sub-slothlike behavior such as this would be evolutionarily self-limiting because the time since the beginning of the universe may be insufficient for the creature to have evolved from smaller forms of life over many generations.

How about intelligence? Since there is still debate on how to define it and measure it in people, I wonder what the question even means when applied to extraterrestrials. Hollywood has tried, but I give them mixed reviews. I know of some aliens that should have been embarrassed at their stupidity. During a four-hour car trip from Boston to New York City, while I was surfing the FM dial, I came upon a radio play in progress that, as best as I could determine, was about evil aliens that were terrorizing Earthlings. Apparently, they needed hydrogen atoms to survive so they kept swooping down to Earth to suck up its oceans and extract the hydrogen from all the H2O molecules. Now those were some dumb aliens. They must not have been looking at other planets en route to Earth because Jupiter, for example, contains over two-hundred times the entire mass of Earth in pure hydrogen. I guess nobody ever told them that over ninety percent of all atoms in the universe are hydrogen.

And how about all those aliens that manage to traverse thousands of light years through interstellar space, yet bungle their arrival by crash-landing on Earth?

Then there were the aliens in the 1977 film Close Encounters of the Third Kind, who, in advance of their arrival, beamed to Earth a mysterious sequence of repeated digits that were eventually decoded to be the latitude and longitude of their upcoming landing site. But Earth longitude has a completely arbitrary starting point — the prime meridian — which passes through Greenwich, England by international agreement. And both longitude and latitude are measured in peculiar unnatural units we call degrees, 360 of which are in a circle. Armed with this much knowledge of human culture, it seems to me that the aliens could have just learned English and beamed the message, “We’re going to land a little bit to the side of Devil’s Tower National Monument in Wyoming. And since we’re coming in a flying saucer we won’t need the runway lights.”

The award for dumbest creature of all time must go to the alien from the original 1983 film Star Trek, The Motion Picture. V-ger, as it called itself (pronounced vee-jer) was an ancient mechanical space probe that was on a mission to explore and discover and report back its findings. The probe was “rescued” from the depths of space by a civilization of mechanical aliens and reconfigured so that it could actually accomplish this mission for the entire universe. Eventually, the probe did acquire all knowledge and, in so doing, achieved consciousness. The Star Trek crew come upon this now-sprawling monstrous collection of cosmic information at a time when the alien was searching for its original creator and the meaning of life. The stenciled letters on the side of the original probe revealed the characters V and ger. Shortly thereafter, Captain Kirk discovers that the probe was Voyager 6, which had been launched by humans on Earth in the late twentieth century. Apparently, the oya that fits between the V and the ger had been badly tarnished and was unreadable. Okay. But I have always wondered how V-ger could have acquired all knowledge of the universe and achieve consciousness yet not know that its real name was Voyager.

Regardless of how Hollywood aliens are portrayed, or how good or bad the films are, we must not stand in denial of the public’s interest in the subject. Let us assume, for the sake of argument, that humans are the only species in the history of life on Earth to evolve high-level intelligence. (I mean no disrespect to other big-brained mammals. While most of them cannot do astrophysics, my conclusions are not substantially altered if you wish to include them.) If life on Earth offers any measure of life elsewhere in the universe, then intelligence must be rare. By some estimates, there have been more than ten billion species in the history of life on Earth. It follows that among all extraterrestrial life forms we might expect no better than about one in ten billion to be as intelligent as we are, not to mention the odds against the intelligent life having an advanced technology and a desire to communicate through the vast distances of interstellar space.

On the chance that such a civilization exists, radio waves would be the communication band of choice because of their ability to traverse the galaxy unimpeded by interstellar gas and dust clouds. But humans on Earth have only understood the electromagnetic spectrum for less than a century. More depressingly put, for most of human history, had aliens tried to send radio signals to earthlings we would have been incapable of receiving them. For all we know, the aliens have already done this and unwittingly concluded that there was no intelligent life on Earth. They would now be looking elsewhere. A more humbling possibility would be if aliens had become aware of the technologically proficient species that now inhabits Earth, yet they had drawn the same conclusion.

Our life-on-Earth bias, intelligent or otherwise requires us to hold the existence of liquid water as a prerequisite to life elsewhere. A planet’s orbit should not be too close to its host star, otherwise the temperature would be too high and the planet’s water content would vaporize. The orbit should not be too far away either, or else the temperature would be too low and the planet’s water content would freeze. In other words, conditions on the planet must allow the temperature to stay within the 180 degree (Fahrenheit) range of liquid water. As in the three-bowls-of-food scene in the fairy tale Goldilocks and the Three Bears, the temperature has to be just right. When I was interviewed about this subject recently on a syndicated radio talk show, the host commented, “Clearly, what you should be looking for is a planet made of porridge!”

While distance from the host planet is an important factor for the existence of life as we know it, other factors matter too, such as a planet’s ability to trap stellar radiation. Venus is a textbook example of this “greenhouse” phenomenon. Visible sunlight that manages to pass through its thick atmosphere of carbon dioxide gets absorbed by Venus’s surface and then re-radiated in the infrared part of the spectrum. The infrared, in turn, gets trapped by the atmosphere. The unpleasant consequence is an air temperature that hovers at about 900 degrees Fahrenheit, which is much hotter than we would expect knowing Venus’s distance to the Sun. At this temperature, lead would swiftly become molten and a 16″ pepperoni pizza will cook in nine seconds.

The discovery of simple, unintelligent life forms elsewhere in the universe (or evidence that they once existed) would be far more likely and, for me, only slightly less exciting than the discovery of intelligent life. Two excellent nearby places to look are the dried riverbeds of Mars, were there may be fossil evidence of life from when waters once flowed, and the subsurface oceans that are theorized to exist under the frozen ice layers of Jupiter’s moon Europa. Once again, the promise of liquid water defines our targets of search.

Other commonly invoked prerequisites for the evolution of life in the universe involve a planet in a stable, nearly circular orbit around a single star. With binary and multiple star systems, which comprise about half of all “stars” in the galaxy, planet orbits tend to be strongly elongated and chaotic, which induces extreme temperature swings that would undermine the evolution of stable life forms. We also require that there be sufficient time for evolution to run its course. High-mass stars are so short-lived (a few million years) that life on an Earth-like planet in orbit around them would never have a chance to evolve.

The set of conditions to support life as we know it are loosely quantified though what is known as the Drake equation, named for the American astronomer Frank Drake (now at the University of California at Santa Cruz). The Drake equation is more accurately viewed as a fertile idea rather than as a rigorous statement of how the physical universe works. It separates the overall probability of finding life in the galaxy into a set of simpler probabilities that correspond to our preconceived notions of the cosmic conditions that are suitable for life. In the end, after you argue with your colleagues about the value of each probability term in the equation, you are left with an estimate for the total number of intelligent, technologically proficient civilizations in the galaxy. Depending on your bias-level, and your knowledge of biology, chemistry, celestial mechanics, and astrophysics, you may use it to estimate from at least one (we humans) up to millions of civilizations in the Milky Way.

If we consider the possibility that we may rank as primitive among the universe’s technologically competent life forms — however rare they may be — then the best we can do is keep alert for signals sent by others because it is far more expensive to send rather than receive them. Presumably, an advanced civilization would have easy-access to an abundant source of energy such as its host star. These are the civilizations that would be more likely to send rather than receive. The search for extraterrestrial intelligence (affectionately known by its acronym “SETI”) has taken many forms. The most advanced efforts today uses a cleverly designed electronic detector that monitors, in its latest version, billions of radio channels in search of a signal that might rise above the cosmic noise. The “SETI At Home” screen saver analyzes real data (downloaded from the internet) for an intelligent signal that rises above the din of cosmic noise. This software has been downloaded by more than 3-million PCs users around the world, which actively taps an astonishing level computing power from your plugged-in PC that would otherwise be doing nothing while you went to the bathroom. Indeed, “SETI At Home” is, by far, the largest computational project in the history of the world. I note that these projects in particular received their start-up funds from The Planetary Society, a 100,000-member organization that, among other objectives, promotes the search for life in the universe. Public support for this enterprise is real and it is deep.

The discovery of extraterrestrial intelligence, if and when it happens, will impart a change in human self-perception that may be impossible to anticipate. If we don’t soon find life elsewhere, what will matter most is that we had not stopped looking. Our species demands that we keep looking. Deep in our soul of curiosity we are intellectual nomads—in search of other places, in search of other life forms because we derive almost as much fulfillment from the search as we do from the discovery.

Comments are closed.

Follow AlicesAstroInfo with RSS
Meet me on social media:
Follow AlicesAstroInfo on Twitter Follow AlicesAstroInfo on Facebook Follow AlicesAstroInfo on Instagram
Follow AlicesAstroInfo on TikTok Follow AlicesAstroInfo on Mastodon Follow AlicesAstroInfo on Tumblr
November 2022: I'm only really active on the bird app, but these other are me for real, and I'll switch when we need to.
Star Parties Nearby!
City:
State:
Zip:
Clubs
Events